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1. Introduction
In this project we evaluate the ability of several reinforce-
ment learning methods to autonomously drive a car through
a cluttered environment. We don’t assume a map of the
environment a priori but rather rely on our sensor (in this
case a LIDAR) to inform control decisions. A standard ap-
proach to solving this problem would require building up a
map of the environment, possibly using an occupancy grid,
and then planning a collision free path through this esti-
mated map using a planner such as RRT*. On the other
hand one notes that simple output feedback controllers,
such as Braitenberg controllers, can be quite effective for
obstacle avoidance tasks. Guided by this example we want
to see how reinforcement learning performs in learning an
output feedback controller for obstacle avoidance.

Our initial goal was to implement a value-based learning
method, and we were recommended to start with SARSA.
After some initial encouraging results with SARSA, we
decided implemented Q-learning and a continuous state-
space version SARSA using function approximation. In
addition we also tried policy search methods.

In short, there were distinct advantages and concerns found
for the different approaches. The value-function-based
approaches benefit greatly from their dynamic program-
ming formulation, but it is also their limitation, particularly
due to the difficulties of discretization. The policy-search-
based approaches have some nice properties including that
they are easy to “seed” with a favorable initialization, and
do not need to be discretized, but do not benefit from Bell-
man’s optimality principle (even if it does not hold, given
the non-Markov observable state). In most cases, the ability
of the reinforcement learning agents to improve their per-
formance, even if not without “hand-holding” from us, is
quite remarkable to watch. That said, significant effort and
tuning is required, and in the end, we were not able to satis-
fiably outperform intuitive hand-designed controllers. The
dynamic programming techniques had a ceiling of perfor-
mance imposed by the discretization, and the policy search

methods were not able to improve upon essentially-perfect
hand-designed controllers. Although this was the case for
the study presented, it seems that in scenarios where intu-
ition is less readily applied, and/or with more patient tuning
of parameters, even better results may be obtained for the
reinforcement learning controllers.

Figure 1. Screen capture from simulation setup: a car in a circular
obstacle field with an array of point LIDAR measurements.

2. Experiment Setup and Simulation
Environment

2.1. Car Model

For our car model we consider a simplified Dubin’s car
model. The location of the vehicle is described by (x, y, ✓),
where (x, y) denote Cartesian position and ✓ denotes the
orientation. For our purposes we suppose that we can con-
trol the derivative of the orientation, namely our control is
u =

˙

✓. We also suppose a fixed speed v. Then the dynam-
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ics of the vehicle are given by

ẋ = v cos(✓) (1)
ẏ = v sin(✓) (2)
˙

✓ = u (3)

2.2. Sensor Model

For our sensor model we use a small array of point LI-
DARs. In particular, N beams are spread evenly over the
field of view [✓

min

, ✓

max

]. All experiments shown use
N = 20 and [✓

min

= �⇡, ✓
max

= ⇡]. Each laser has a
maximum range of d

max

. The n

th laser then returns x

n

,
which is the distance to the first obstacle it encounters, or
d

max

if no obstacle is detected. Then one laser measure-
ment can be summarized as X = (x1, . . . , xN

).

2.3. Obstacle Environment

Picking the right obstacle environment for our task required
some trial-and-error. Obstacles that were too thin along
one direction were not a good choice, as they could hide
in between the “array of point LIDARs” as the robot ap-
proached. Thus circular obstacles were chosen, as they
circumvented this problem. Picking the right density of
obstacles and obstacle size was another trial-and-error pro-
cess. A square border prevented the car from escaping. A
listing of approximate parameters for the obstacle environ-
ments used is provided in Table 1. Generalizations across
obstacle environments is outside the scope of this project.

Car parameters
Car velocity, v 16 m/s
Maximum turning rate, u

max

4 rad/s

Sensor parameters
Number of point LIDARS, N 20
Maximum laser range, d

max

10 m
Field of view [✓

min

, ✓

max

] [�⇡,⇡]

Obstacle environment parameters
Area of square world 250 m

2

Obstacle density 0.18 / m2 (45 obstacles in 250 m

2)
Circular obstacle radius 1.75 m

Table 1. Simulation parameters used for the experiments, unless
otherwise noted.

2.4. Simulation Environment

Our software stack is integrated with a robotics visualiza-
tion tool called Director (Marion, 2015). We use the Direc-
tor code for visualization and raycasting. This is the only
external code that we use in addition to standard Python
modules. Our simulation environment is written in Python.
We have a main class called Simulator which com-
bines together several other modules, e.g. Car, Sensor,
World, Controller, Reward, Sarsa, etc, to con-
struct a working simulation class. All of this code was

written by us for the project. As mentioned before, the
only fundamental pieces of code that we didn’t write were
the visualization tools and the raycasting method which
we use for computing our sensor model. One nice fea-
ture of the Director application is that it uses Visualization
Toolkit as the underlying graphics engine, and thus our ray-
cast calls are actually in C++ and thus very efficient. We
use a timestep of dt = 0.05 in all our experiments, and
scipy.integrate is used to for integrating forward the
dynamics.

All of the code for this project is open-source and
may be found at github.com/peteflorence/

Machine-Learning-6.867-homework. We also
strongly encourage readers to watch our YouTube video,
linked from the GitHub repo, which displays the controllers
in action, from the learning phase through to final learned
controllers.

2.5. Braitenberg (Hand-Designed) Controller

As a baseline against which to compare our learned con-
trollers, we used a simple hand-designed controller inspired
by the controllers of Valentino Braitenberg. The most basic
controller we tried simply counts the number of non-max
sensor returns on the left (n

left

=

P
N/2
i

[x

i

< d

max

])
and compares with the number of non-max sensor re-
turns on the right (n

right

=

P
N

i=N/2+1 [x

i

< d

max

]),
and then selects the action to turn towards the direction
min(n

left

, n

right

). If no obstacles are seen (n
left

=

n

right

= 0), then the controller selects to go straight.
Thus the action space for this simple controller is A =

{u
max

, 0,�u
max

}. This controller actually works surpris-
ingly well.

The best Braitenberg-style controller we used is a slight
improvement on the above version: it actually takes into
the account the distances measured. This controller uses
the squared inverse of each of the sensor measurements as
its features: �

B

(x

i

) =

1
x

2
i

. The sum of these features is
then computed for the left and right, and again the action is
selected to turn towards the direction min(n

left

, n

right

).
An algorithm description is provided (Algorithm 1).

github.com/peteflorence/Machine-Learning-6.867-homework
github.com/peteflorence/Machine-Learning-6.867-homework
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Algorithm 1 Braitenberg Squared Inverse Controller
(BSIC)

Input: sensor data x

i

, size N

Output: u from A = {u
max

, 0,�u
max

}
Initialize n

left

, n
right

= 0

for i = 1 to N/2 do
n

left

= n

left

+ 1/(x

i

)

2

end for
for i = N/2 + 1 to N do
n

right

= n

right

+ 1/(x

i

)

2

end for
if n

left

> n

right

then
u = u

max

(TURN LEFT)
else

if n
left

< n

right

then
u = �u

max

(TURN RIGHT)
else
u = 0 (GO STRAIGHT)

end if
end if

3. Dynamic Programming: SARSA and
Q-Learning

Two of the most popular methods in reinforcement learn-
ing are SARSA and Q-Learning. These methods both aim
to find the optimal policy of a dynamic programming prob-
lem. Thus the first step is to reformulate our problem as a
dynamic programming problem.

3.1. Dynamic Programming Formulation

To formulate our problem as a dynamic programming prob-
lem we need to define a “state.” Let S

c

= (x, y, ✓) be the
state of the car, and let X = (x1, . . . , xn

) be the sensor
state. What we can observe is S

c

and X . On the other
hand the “true state” includes a complete description of the
global map. If we don’t give our learning algorithm a prior
map and only let it have measurements of S

c

and X , then
it is clear that the “true state” is partially observable. To
make our problem similar to the limitations of a real car
robot with just the described LIDAR sensor model, we only
allow our reinforcement learning agent to access X , and so
we consider S = X (this is because the dynamics of the car
are trivial here). Since this is not a state in the true sense
of the word let us call it a “reward state” (really it’s just the
observation). Next we need to define our action set. In prin-
ciple our model has a continuous action set. However, for
the purposes of SARSA and Q-Learning it is much easier
to have a discrete action space. Thus we restrict ourselves
to a 2 {u

max

, 0,�u
max

} = A, which correspond to left,
straight, and right actions. Let ✓

n

be the angle of nth laser
where ✓

n

= 0 corresponds to straight ahead. Now we need

to define the reward function. First define weights

w

n

= C0 + cos(✓

n

) (4)

Also define

�(x

n

) =

(
min(1/x

n

, C

max

) x

n

< d

max

0 x

n

= d

max

(5)

Then � has the effect of amplifying short distance mea-
surements. Let W =

C

raycastP
n

w

n

· (w1, . . . , wN

), �(X) =

(�(x1), . . . ,�(xn

)). Then define the reward R(S, a) as

R(S, a) = C

action

|a|+ hW,�(X)i (6)

where C

action

is an action cost. Finally if the car is cur-
rently in collision with an obstacle, i.e. some laser x

n

is
reading less than d

min

then we set R(S, a) = C

collision

.

Now let us think about why this may be a reasonable re-
ward function for our objective, which is obstacle avoid-
ance. One should think of C

raycast

, C

action

, C

collision

< 0

and C0, Cmax

> 0. Then we see that the components of
�(X) increase as we get close to obstacles. And they in-
crease as the inverse of the distance to the obstacle. Thus
this is penalizing getting too close to obstacles. Now con-
sider the weights W show in Figure 2.

This means that it’s worse to have obstacles in front of you
than off to the side. The action cost is to encourage the car
to drive straight rather than spin around in circles. Finally
since we are interested in obstacle avoidance we impose a
large penalty if the car does crash into an obstacle.

The reason we have �(X) and the weights W is reward
shaping. In reality all we care about is not crashing into
obstacles, but it helps the algorithms to converge if the re-
wards “guide” them towards staying away from obstacles,
e.g. if the reward is higher the further you are from the
obstacles.

Now that we have the reward function we can formulate
our problem as a dynamic program. The problem is to find
the policy ⇡ : S ! A to solve

max

⇡

E

⇡

2

4
X

t�0

�

t

R(S

t+1, at)

3

5 (7)

The expectation is over the reward states that result from
taking actions according to policy ⇡. Here � 2 (0, 1) is a
discount factor. In a standard dynamic programing frame-
work the state S

t

would be Markov. That is, future states
depend only on the current state and future actions. In our
case however our reward state is non-Markov since the map
of the world is not included as part of our state.
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3.2. SARSA(�)

The difficulty with applying standard dynamic program-
ming techniques to the current problem is that it is hard to
write down the transition law (S

t

, a

t

)! S

t+1 since this re-
quires knowing how the sensor measurements will evolve if
we take a particular control action. The SARSA technique
allows us to circumvent this problem if we have access to
runs/simulations of the true system. The Q-Values are de-
fined as

q

⇡

(S, a) = E

⇡

2

4
X

k�0

�

k

R(S

t+k+1, at+k

)|S
t

= s,A

t

= a

3

5

(8)
If we knew the Q-values we could choose the best policy
as

a = argmax

a

0
q

⇡

(s, a) (9)

The ultimate goal of SARSA(�) is to find the optimal pol-
icy ⇡

⇤. Intuitively the approach is to estimate q

⇡

and then
slowly improve the policy ⇡ towards the optimal policy by
using greedy policy selection based on the current q val-
ues. The algorithm is always estimating q

⇡

for the current
policy ⇡ and hence the q-values ultimately converge to q

⇡

⇤ ,
and the greedy policy ⇡also converge to ⇡

⇤.

Algorithm 2 SARSA(�)
Initialize Q(S, a) arbitrarily for S 2 S, a 2 A
repeat
Z(S, a) = 0 for all S 2 S, a 2 A
for each step of episode do

Take action A, observe R,S

0

Choose action A

0 from S

0 using policy derived from
Q (e.g. ✏-greedy)
A

⇤  argmax

a

Q(S

0
, a) (if A0 ties for max then

A

⇤  A

0)
�  R+ �(Q(S

0
, A

0
)�Q(S,A))

Z(S,A) Z(S,A) + 1

for all s 2 S, a 2 A do
Q(s, a) Q(s, a) + ↵�Z(s, a)

if A0
= A

⇤ then
Z(s, a) ��Z(s, a)

else
Z(s, a) 0

end if
end for
S  S

0
, A A

0

end for
until end of episode

In order to apply SARSA in the form described above we
need to discretize the state-action space. In section 3.4 we
describe an approach that doesn’t require discretizing the

state. In order for the SARSA algorithm to be effective
without drastically increasing the training time, we must
keep the size of the discretization relatively small. With
this in mind we chose a discretization based on bins. The
discretization is governed by three parameters. N

inner

,
the number of inner bins, N

outer

the number of outer bins
and �

cutoff

, the cutoff distance (as a fraction of the max-
imum laser range) between inner and outer bins. A bin
is defined by two angles ✓0, ✓1 and two distances d0, d1.
Then this bin is occupied if any laser whose angle lies in
[✓0, ✓1] returns a distance in [d0, d1]. For example suppose
N

inner

= 5 and N = 20. Then the lasers corresponding
to this bin are x1, . . . , x4. This bin would be occupied if
x

i

2 [d

min

,�

cutoff

⇤ d
max

] for some i 2 {1, . . . , 4}. If a
bin is occupied then it is labeled with a 1, if it is empty is is
labeled with a zero. We have already discretized the action
space into A = {�4, 0, 4}. Thus the discretization of the
state-action space lies in the space {0, 1}Ninner

+N

outer⇥A.
Hence the size of the discretization is 2Ninner

+N

outer⇥|A|.

3.2.1. RESULTS

There are many parameters that must be chosen in order
to run the SARSA lambda algorithm. We discuss some
of the most important here and give intuition on how we
chose them. Then we will analyse how varying a few key
parameters around our baseline setup affects performance.

Two of the most important parameters are the number of
bins N

inner

, N

outer

in the discretization. You need enough
bins that so that the state is informative enough to pass
through relatively narrow gaps between obstacles. How-
ever adding more bins comes at the cost of increasing the
size of the state space which can increase training time. In
addition if a particular action-state pair is not visited suffi-
ciently many times then that Q-value Q(s, a) will not be a
good approximation to the true Q-value, and hence control
decisions taken based on that Q-value will not be optimal
(and in fact will be quite poor usually). Through many ex-
periments we found that N

inner

= 5, N

outer

= 4 provided
good performance while keeping the size of the discretized
state-action space relatively small at 29 ⇤ 3 = 1536. An-
other set of parameters that had a large impact on perfor-
mance were those of the cost function. It turned out to
be important to balance the reward for staying away from
obstacles with the penalty for using large control action,
C

action

. If C
action

was too small the controller could end
up learning to spin in circles, see Section 3.2.2 for more
discussion of this problem. Alternatively if C

action

was
too high the behavior would bias too much towards driv-
ing straight and wouldn’t do enough to avoid obstacles.
Another important parameter was the step size ↵ in the
SARSA update. It needs to be small enough so that the Q-
Value estimates don’t diverge. However, if it is too small
then the Q-values are updated only a small amount in each
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iteration and convergence would take a long time. For the
discrete state-action case we found that ↵ = 0.2 worked
well, although it is difficult to evaluate what the “correct”
step size is. See Table 2 for our preferred set of default
parameters. First we provide a qualitative discussion of
the results of the Q-Learning using parameters from Ta-
ble 2. We initialize all of the Q-values to zero and run the
SARSA algorithm for 8000 seconds. Since our simulation
timestep is dt = 0.05 this amounts to 8000/dt = 160, 000

iterations of the SARSA update. Our simulation runs at
approximately 700 Hz. Since it takes 20 ticks of the sim-
ulator to complete one second this amounts to a simula-
tion of 35⇥ normal speed. Thus this training takes ap-
proximately 3.8 minutes. The controller that we get out
of this performs reasonably well. Specifically it manages
to drive around the obstacle field shown in Figure 3 at a
reasonably high speed with mean time between crashes of
approximately 30 seconds. One thing to note is that this
is much worse than the performance of our default con-
troller described in section 2.5. A comparison of perfor-
mance against the default controller is given in Figure 6.
Is is apparent the the default controller provides highly su-
perior performance in run duration, and to a lesser extent
discounted reward. At the given car speed in this run the
default controller can essentially drive around indefinitely
without crashing. However, it’s behavior is to make a hard
turn as soon as it detects an obstacle. Thus it has a tendency
to get trapped within an area just going in circles. The de-
fault controller always turns as soon as it sees anything,
and even if it goes through a gap, will do so by constantly
alternating between left and right control actions. On the
other hand since our reward function penalizes taking con-
trol actions (by C

action

) it rewards our controller for going
straight. Thus the learned controller will continue to go
straight in some situations where we are detecting obsta-
cles, but they are not in our direct path as in Figure 4. This
is an interesting behavior that is learned. Thus qualitatively
our learned controller turns much less than the default con-
troller and hence doesn’t tend to get stuck circling in one
spot. Another interesting feature of the controller is that
learns how to drive through narrow gaps such as in Figure
5. For a more quantitative analysis we can consider the
duration and discounted reward over time (see Figure 7).
The upper plot shows that as time progresses the average
duration of an episode increases. Similarly the lower plot
show that as time progresses the algorithm also improves
in terms of discounted reward. This clearly shows how the
learning algorithm improves its performance over time, as
is to be expected.

3.2.2. FAILURE MODES

Occasionally our learned controller would end up spin-
ning us in circles, quite literally. Here we try to un-

derstand why this might have happened. Let X

max

=

(d

max

, . . . , d

max

) which corresponds to a laser measure-
ment where no obstacles are detected. Then what is hap-
pening is that Q(X, 0) < max

a2{�u

max

,u

max

} Q(X, a).
Thus we end up turning a given direction (suppose it is left
without loss of generality) even when we don’t see an ob-
stacle. The reason this actually works quite well is that in
our randomly generated maps there tends to be pockets of
space that are obstacle free. If the vehicle happens to enter
or be initialized into one of these “obstacle free” zones then
by aggressively turning a given direction it can keep itself
inside the “obstacle free” zone and avoid ever running into
something. Although this controller actually produces a
high reward (since it never crashes) it is not what one would
consider a “good” controller. There are several reasons that
SARSA may end up learning this behavior. The most im-
portant is that our reward-state is not Markov. This means
that when we are in reward state X

max

we don’t know our
transition probabilities to the next reward state. This is be-
cause we have only local information in the reward-state
and have no information about the global map. This is an
example of our learning algorithm exploiting structure in
the problem that we didn’t mean for it to take advantage of.

A possible solution to this problem is to redesign the re-
ward function. We could include reaching a goal as part of
the reward function, so then the learning algorithm would
have an incentive to make progress towards this goal rather
than spin in circles. Another solution approach is to in-
crease the number of obstacles in the world to eliminate
these “obstacle free zones.”

3.2.3. ANALYSIS

In this section we perform two experiments to further char-
acterize the performance of our SARSA algorithm. In the
first experiment we hold all the parameters fixed except �.
The � parameter affects the eligibility traces and controls
the balance between a TD (temporal difference) update and
an MC (Monte Carlo update). At the two extremes, � = 0

corresponds to a pure TD update and � = 1 corresponds
to a pure MC update. Intuitively TD updates rely heavily
on the Markov property and the Bellman equation for the
Q-Values. On the other hand MC updates simply try to es-
timate Q(S, a) using the empirically observed rewards that
followed the state action pair (S, a) and don’t rely on the
Markov property or the Bellman equation. It is known (Ch.
7 of (Sutton & Barto, 1998)) that � > 0 can help conver-
gence speed and may improve performance in non-Markov
domains. In Figure 9 we see a plot of performance data
for several different � values. Since each run takes 5 min-
utes to train we are limited in the number of simulations
we can perform. Overall the trend seems to be that higher
lambda values provide better performane. Since our obser-
vation state is highly non-Markov this coincides with the



RL for Obstacle Avoidance

fact that SARSA(�) with � close to 1 is less sensitive to
violations of the Markov property since each update step is
more similar to a MC update.

Another interesting fact that we noticed is that, even with
the same set of parameters, different runs of the learning
algorithm can produce quite varied performance. Figure
10 shows several runs of the learning algorithm using the
same set of parameters. Out of the 10 trials, runs 5 and 9
stand out. They have extremely long average run durations
which are an order of magnitude larger than all the rest. In-
vestigating these runs more carefully they both succumbed
to the “drive in circles” failure mode. Thus our learning al-
gorithm is sensitive to this failure mode, with about a 20%

failure rate. We believe that with a more carefully designed
reward function we could take care of this failure mode.

3.3. Watkins Q-Learning

Q-Learning is almost the same as SARSA but with a slight
variation in the update. While SARSA is an on-policy
learning method (that is we are learning the Q-value for
the current policy), Q-Learning is an off-policy method (we
are learning the Q-Values under the optimal policy (even
though we not currently controlling according that policy).

Algorithm 3 Watkins Q-Learning(�)
Initialize Q(S, a) arbitrarily for S 2 S, a 2 A
repeat
Z(S, a) = 0 for all S 2 S, a 2 A
for each step of episode do

Take action A, observe R,S

0

Choose action A

0 from S

0 using policy derived from
Q (e.g. ✏-greedy)
A

⇤  argmax

a

Q(S

0
, a) (if A0 ties for max then

A

⇤  A

0)
�  R+ �(Q(S

0
, A

⇤
)�Q(S,A))

Z(S,A) Z(S,A) + 1

for all s 2 S, a 2 A do
Q(s, a) Q(s, a) + ↵�Z(s, a)

if A0
= A

⇤ then
Z(s, a) ��Z(s, a)

else
Z(s, a) 0

end if
end for
S  S

0
, A A

0

end for
until end of episode

3.3.1. RESULTS

The same preferred parameter set for SARSA given in
Table 2 also works well for Q-Learning. The resulting

controller exhibits similar qualitative performance to the
SARSA controller described above and the plot of perfo-
mance over time is almost identical to Figure 7 so we omit
it here. We do however repeat the two experiments from
section 3.2.3. The first is to vary the � parameter while
holding everything else fixed. The results are shown in
Figure 11 and are very similar to those for SARSA. There
seems to be a weak trend of increasing performance as we
increase �. Again this makes sense since a higher � corre-
sponds to less reliance on the Markov and Bellman prop-
erties (which we know are violated in this case). Unfor-
tunately Q-Learning does not resolve the “driving in cir-
cles” failure mode, and possibly is even more sensitive to
it. It does happen occasionally and for essentially the same
reasons as in SARSA. We repeated the experiment from
section 3.2.3 that performed multiple runs with the same
parameter set. The results are shown in Figure 12. In this
case you can see that runs 2, 6, 9 have an order of magni-
tude longer duration than the rest. These are exactly the
runs where we ran into the “drive in circles” faiure mode.
Thus for Q-Learning the failure rate was 30%, which is
slightly higher than the 20% for SARSA.

Ultimately there wasn’t too much difference in the perfor-
mance of SARSA versus Q-Learning. Looking closely at
the duration and reward in Figures 9 and 11 the perfor-
mance difference between SARSA and Q-Learning is re-
alitvely negligible.

3.4. SARSA with function approximation

One of the major drawbacks of the methods presented in
sections 3.2 and 3.3 is that they require discretizing the
state-action space. In reality however our state is really
continuous since the laser measurements lie in RN

+ . An al-
ternative to discretizing the state space is to use function
approximation to approximate the Q-Values. As described
in Chapter 9 of Sutton and Barto (Sutton & Barto, 1998)
this still requires a discrete action space. We consider a
linear function approximation to the Q-Values given by

Q(S, a,w) = w

a

(0) +

NX

n=1

w

a

(n)�(x

n

) (10)

where w is the matrix of weights. We think this is a reason-
able approximation to the Q-values since it has almost the
same form as the reward function. We include an intercept
term w

a

(0) to capture the fact that even when the feature
vector �(X) is identically zero we prefer action a = 0 to
actions a = {�u

max

, u

max

}. Given the above form, we
implemented gradient descent SARSA(�).
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Algorithm 4 Gradient Descent SARSA(�)
Initialize weights w to 0.
repeat
z = 0

S,A initial state and action of episode
for each step of episode do

Take action A, observe reward R and next state S

0

A

0  policy derived from Q-values at state S

0 (us-
ing ✏-greedy)
�  R+ �Q(S

0
, A

0
,w)�Q(S,A,w)

w
old

 w
w w + ↵�z
z ��z +rwQ(S,A,w

old

)

S  S

0
, A A

0

end for
until end of episode

Intuitively this corresponds to adjusting the weights w
a

(n)

to get the best approximation to the Q-Values in a least
squares sense (see Button-Sarto Ch. 9 (Sutton & Barto,
1998) for a precise statement).

3.4.1. RESULTS

It is notoriously difficult to get function approximation
methods for SARSA to perform well. Performance funda-
mentally depends on whether the chosen parametric form,
given by (10), provides a good approximation of the Q-
Values. The first thing we noticed was that a much smaller
step-size ↵ was needed. After experimenting we found that
↵ = 1e � 4 was small enough that the weights wouldn’t
diverge to 1. For the training in sections 3.2 and 3.3 we
initialized the Q-Values to zero. The analog in this case
corresponds to setting the weights w

a

(n) = 0. This ap-
proach didn’t yield very good results for the function ap-
proximation SARSA method. An alternative, as outlined
in (Smart & Kaelbling, 2000), is to help the learning al-
gorithms perform better by running a known controller to
help learn some baseline Q-Values. Essentially during a su-
pervised learning period we are learning weights {w

a

(n)}
which approximate the Q-Values under the known policy
⇡

default

. During this phase we are performing the weight
updates from Algorithm 4 but the policy is chosen accord-
ing to ⇡

default

rather than the epsilon greedy policy. In
this setup we run this supervised training for a while before
switching to the standard SARSA(�) updates specified in
Algorithm 4. If we use the standard environment used in
sections 3.2 and 3.3 we end up falling into the “drive in
circles” failure mode outline in 3.2.2. Increasing the obsta-
cle density to eliminate the “obstacle free” zones resolves
this problem and we are able to get a functioning controller.
The controller performs reasonably well, but still consider-
ably worse than the Q-Learning controller on the same en-

vironment. The interesting thing is to attempt to understand
the weights {w

a

(n)} that we are learning and why they
might be working. The weights are plotted in Figure 8. The
actions {4, 0,�4} correspond to Left, Straight, and Right,
respectively. Also the laser measurements go from �10 to
10 with 0 corresponding to straight ahead. Thus x�10 is
our leftmost laser measurement. Not shown are the inter-
cept terms w

a

(0). The greedy controller that can be derived
from the Q-Values is ⇡(S) = argmax

a

0
Q(S, a

0
). In other

words we should choose the action that maximizes the Q-
Value for the current state. Suppose there is an obstacle
to our right, then the feature vector �(X) will have �(x

n

)

small for n < 0 (i.e. range measurements to our left are
large) and �(x

n

) large for n > 0, i.e. measurements to our
right where the obstacle is. Since the weights w4(n) corre-
sponding to action a = 4, which is Left, are mostly positive
for n > 00, and since the only components of �(X) which
are large are those where the obstacle is (i.e. n > 0) we
get that w4(n)

˙

�(X) is moderately positive. On the other
hand w�4(n) is exactly the opposite. For n > 0 we mostly
have w�4(n) < 0 and so w�4(n)

˙

�(X) will most likely be
negative. Thus we have that Q(S, 4) > Q(S,�4). So we
prefer to go left rather than right. A similar logic applies to
understanding why Q(S,�4) could be larger than Q(S, 0).
Thus in this case we would choose left.

The above exposition gets the general idea across. How-
ever, as can be seen in Figure 8 the actual weights, while
exhibiting some general trends, are quite messy and hard to
parse.

4. Policy Search
As an alternative method to the value-function-based ap-
proaches presented in Section 3, we also investigated the
use of policy search methods. The key difference with
policy search approaches versus value-function-based ap-
proaches is that they are not based on dynamic program-
ming, and instead are local optimization methods of a para-
metric policy. The basic idea is very simple: if we can rep-
resent the behavior of the robot parametrically, then we can
just vary the parameters and attempt to optimize the total
reward for the robot.

A number of policy search methods were investigated.
Some successful results were obtained, but as with the diffi-
culties encountered for function approximation, in general
the learned weights are messy and performance was some-
what inconsistent: sometimes significant improvements in
performance were observed during the course of training,
but at times the researcher is led to believe that luck is
entirely too dominant. Empirically, it was found that the
variant of Episodic REINFORCE as presented in the fol-
lowing subsection performed the best on the given obstacle
environments. A second approach, using a Beta distribu-
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tion, is discussed as well, and although it did not produce
universally successful obstacle avoidance maneuvers, it is
nonetheless interesting to analyze.

It is interesting to note the list of differences with the meth-
ods of the last section. For one, policy search is able to han-
dle continuous state and action spaces without discretiza-
tion. The function approximation approach discussed in
Section 3.4 is able to consume a continuous state space,
but still is limited to a discrete action space, whereas policy
search methods may be continuous in both. Also in contrast
with the dynamic programming methods, these gradient-
descent-based policy search methods are inherently local
search, and so we have no guarantees on finding global
maxima even if we had access to a full Markov state. The
methods investigated all used at least 10 parameters, and so
it is very likely that local maxima were abundant in these
high-dimensional spaces. Stochasticity in gradient descent
may have contributed to escaping local maxima, but it is
difficult to say. It is also useful to note that the policy search
methods discussed were all episodic in nature – i.e., there
was no TD (temporal difference) analog used here for pol-
icy search. Although such methods exist, it was easier in
initial investigations to focus on the episodic versions.

4.1. Episodic REINFORCE with “logistic” control
function

Many different variants of gradient-descent-based opti-
mization of a parametric policy were investigated. The fol-
lowing was the algorithm with which the most empirical
success was achieved. It has been able to repeatedly find
parameters that seem capable of developing smart behav-
ior, and in particular is able to increase, stochastically, the
average duration which which the robot is able to avoid
crashing. It is different in a few ways from what might
be considered a standard REINFORCE algorithm, and the
reasons for these differences will be discussed. The para-
metric form of the policy (for commanding the steering rate
u) was chosen to take the following continuous form:

u = 2u

max

✓
�(✓

T

�

B

(X))� 1

2

◆
(11)

where � is the logistic sigmoid function, and the features
�

B

(x

i

) =

1
x

2
i

are the same as for the Braitenberg vehicle.
(Empirically, these were found to work well. Squaring the
inverse serves to increase the emphasis even more on close
obstacles.) The logistic sigmoid function is pushed down
by 1/2 so that it is an odd function, and is then scaled
by 2u

max

. Note that a bias term has purposely been left
out, because it would only serve to bias left/right turning,
whereas our desired controller should be symmetric. We
also note that the above is a deterministic function of the
parameters, so that the stochasticity of the policy is on the
parameters rather than the output. The REINFORCE up-

date is adapted from Roberts et al. (Roberts et al., 2011):

✓

i+1 = ✓

i

+ ⌘(R

total

(✓

i

+ ✓

p

i

)�R

total

(✓

i

))✓

p

i

, (12)

where ✓

p

i

is a sampled zero-mean Gaussian perturbation,
and the update is such that if total reward R

total

is in-
creased due to the perturbation, then the parameter update
will move in that direction. We note from Roberts et al.
that this matches the form of the gradient update for RE-
INFORCE since @

@✓

i

ln(p(✓

p

i

)) / (�

0
i

� �), and the scalar
may be absorbed into the learning rate, ⌘, term. After ex-
ploring different options, the same reward function as in
Section 3 was used (a combination of collision penalty,
action cost, and large-sensor reward). Although we have
N = 20 parameters in the vector ✓ in Equation 11, we
recognize that the ideal behavior of the vehicle is symmet-
ric, and so we reduce our model to just 10 parameters such
that ✓

N�i

= �✓
i

for i = 1, 2, ...,

N

2 . Also rather than sam-
pling from a true zero-mean multivariate Gaussian, we take
a page from Kiefer-Wolfowitz’s finite-difference method
and only perturb one parameter at a time. This was found
to be preferable since the contribution of one of the point
LIDARs to the control action could be evaluated in isola-
tion. The implementation is to randomly select one of the
10 indices on each iteration, and perturb that one param-
eter by a zero-mean single-variate Gaussian with variance
�

2
p

. This may break the algorithm’s exact resemblance of
REINFORCE, but it is clearly very similar. We note that
this formulation is essentially stochastic gradient descent
using finite differences. An algorithm description is pro-
vided below.

Algorithm 5 Variant of Episodic REINFORCE inspired by
Roberts et al.

Initialize policy parameterization ✓

i

= ✓0

repeat
compute R

total

for1-horizon roll-out with u(✓

i

)

randomly select index j for one of ✓
i

in ✓

left

✓

p

i

= zero vector, same length as ✓
✓

p

i

[j] = N (0,�

2
p

)

compute R

0
total

for 1-horizon roll-out with u(✓

i

+

✓

p

i

)

update policy:

✓

i+1 = ✓

i

+ ⌘(R

total

�R

0
total

)✓

p

i

until end of training time

4.1.1. RESULTS

Three scenarios for the performance of policy search are
discussed: (i) starting from a zero-vector ✓, (iii) starting
from hand-chosen parameters that already give near-perfect
performance, and (ii) starting from hand-chosen parame-
ters that roughly work well already.
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Before we analyze each of the three scenarios, though, we
note observations that applied in all cases. For one, be-
cause the sigmoid function �(x) is very flat for |x| >> 0,
we expected it to be difficult to effectively change param-
eters usefully unless ✓

T

�

B

(X) was close to 0. Thus we
expected the algorithm to be able to successfully descend
away from a parameter initialization of all zeros (as in case
(i)), but did not expect to as easily demonstrate unambigu-
ous improvement for already |✓T�

B

(X)| >> 0 policies.
Indeed, that is the case we observed in case (ii).

(i) For starting with ✓0 = 0, a significant improvement in
controller performance was able to be learned with a sur-
prisingly small amount of training time, as is shown in Fig-
ure 13. Only 1-2 minutes of simulation (approximately 30-
60 minutes of “car” time) were required to produce con-
trollers that were capable of surviving in the obstacle field
for 400 or more time steps (20 seconds “car” time). To be
clear, ✓ as a zero vector corresponds to ignoring all sensor
measurements and going perfectly straight forward at ev-
ery time step. This is clearly not optimal controller per-
formance. In practice when starting from zeroed initial
weights, the controller learns by having a large enough per-
turbation ✓

p

i

in the correct direction to be able to dodge an
obstacle that it wasn’t able to before. Obviously when start-
ing from the initial zero vector, it helps to use significantly
large variance �

2
p

for the perturbation sampling such that
something actually capable of causing the car to dodge the
“straight into brick wall” scenario. In practice it seemed
that �2

p

could be increased as long as ⌘, the learning rate,
was decreased further to compensate. In addition to provid-
ing satisfactory performance, the final weights (Figure 14)
make sense: for obstacles that are in front of the vehicle
the ✓

left,i

for i = 9, 8, .., a strong turn away from the ob-
stacle is preferred (which corresponds to negative weights,
for ✓

left

(We remind the reader that the weights are mir-
rored, so we only need to consider the left weights).

In general the weights ✓
left

found by the policy search were
more strongly negative. In closer detail, it is interesting to
note some surprising parameter settings are found by pol-
icy search. For example. having small negative parameters
for the left lasers out in front of you, and one very large
parameter for out to the left side, would produce interest-
ing behavior. With this controller, as the robot approached
obstacles from afar, it would only be slightly turning away
from them. This has the benefit of not incurring a large
action cost and allowing the robot to drive more straight.
When the robot comes very close to the obstacle, though,
its measurement for out to the side will kick in, and it will
very sharply turn away from the obstacle. Since the other
weights were in the right direction but small, this prevented
the robot from actually moving towards an obstacle head
on, and so the “out to the side” measurement was able to
help kick it away from the obstacle.

Another unexpected behavior was that for the weights for
the lasers pointing out to the sides of the car, having them
be positive in ✓

left

could actually give qualitatively bet-
ter controller performance. The policy search parameters
shown in Figure 14 show this characteristic. With a signif-
icant positive weight for example for the farthest left lasers
x1, x2, the the car would turn slightly around obstacles af-
ter it passed them. This had the effect of helping the car
not get stuck in the square boundary corners of the world.
It turns out that this is a key strategy for the obstacle envi-
ronments that were used. It also had the capability of caus-
ing ‘circling’. As discussed before with the DP approaches,
a cost on action helped negate the circling behavior. This
did, however, unsurprisingly make it much harder to learn
“dodging the brick wall” for the initially-zeroed parameters
case. To verify, most learned controllers, including the one
in Figures 13 and 14, did not produce circling behavior but
instead produced desirable ‘dodge obstacles’ behavior.

(ii) We also tried initializing the policy with parameters
that already gave impressive obstacle-avoidance per-
formance. This is indeed an ideal property of policy
search: it is easy to formulate “seeding” the policy
search with a policy that is known or expected from other
means to already be a good policy. This may come,
for example, from trajectory optimization techniques,
but for us this ideal “seeded” policy was designed by
hand. It was not hard to think about the 10 ✓ parameters
and design ones that would work very well. A sensi-
ble setting of the parameters was given by ✓

left,ideal =

[�10,�10,�10,�10,�10,�100,�100,�100,�100,�100],
and ✓

right

was imposed to be �✓R
left

as discussed. These
settings cause sharp turning motions away from obstacles
out in front of the vehicle, and only slightly turning away
from the obstacles out to the sides. The smaller weights
for the lasers pointing out to the sides cause less erratic
turning when driving parallel to a wall or obstacles, and
because there is an action cost on the control input, this
seems to positively impact the total reward of a roll-out.
Indeed, this ✓

left,ideal, with zero optimization, was found to
give a controller that did not crash on many environments.
To increase the challenge, the obstacle density and the
car’s velocity were increased. It was difficult, however, to
find a setting where the car still “had a chance”, but just
was not making the best control decisions. In other words,
these initial parameters are near perfect.

In the end, at least with the parameters attempted, the abil-
ity of the policy gradient descent to “improve” this already-
stellar policy seemed tenuous. Settings of �2

p

and ⌘ either
seemed to produce ✓ that would barely change from the
initial condition, or if the updates were too large, would
diverge randomly. This seems plausible if the controller’s
already stellar performance represents a local maxima. Ad-
ditionally, as mentioned the effects of perturbations are ex-
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pected to be small when the input to the sigmoid already
contains values far from zero, as is the case with these large
initial parameters. It is possible that this is primarily a re-
sult of using the sigmoid function. In short, if the policy
is already really good, then policy search may not surpris-
ingly have a difficult job of improving performance.

(iii) Finally, we investigate a third scenario, where
the initial parameters are not stellar, but they are
also not zero. For this purpose, ✓

left,okay =

[�1,�1,�1,�1,�1,�10,�10,�10,�10,�10] sufficed.
This is similar to the parameters just discussed, but with
less strong turning. In this case, the policy gradient descent
was able to find improved parameterizations, as shown in
Figure 15, although of course the increase in performance
was not as drastic as it was for the zeroed initial parame-
ters. The parameters found by policy search (Figure 16)
were sensibly more negative than the initial parameters.
It is interesting to note that although the weights appear
to be very “noisy” from ✓

i

to ✓

i+1, if we think about
this, it is not too surprising. Having a sequence of three
weights be [�10,�40,�10] is not all that different from
[�20,�20,�20] since in these obstacle environments, if
one laser is intersecting an obstacle, then the chances are
that its neighbor is as well.

4.2. Beta distribution

As an alternative option, a second formulation of the pol-
icy parameterization was used. The largest difference here
was that the policy is actually probabilistic, even given a
specific parameterization. (In the previous subsection, the
controller was only stochastic due to a probability distri-
bution on the parameters.) It was hypothesized that a beta
distribution (scaled by u

max

) might offer a useful way to
encode a probability distribution over [�u

max

, u

max

]. In
particular the formulation was:

u ⇠ 2u

max

(beta(a, b)� 1/2) (13)

a = ✓

T

a

�

B

(X) + ✓

a,0 (14)

b = ✓

T

b

�

B

(X) + ✓

b,0 (15)

Whereas the previous formulation has 20 parameters (only
10 independent due to symmetry), this formulation has 42
parameters, with ✓

b

= ✓

R
a

reducing this to 21 by symmetry.

With some thought, one can design parameters for this con-
troller that seem to make sense. As with all the other con-
trollers studied, if all of the weights for the lasers to one
side of the car has the same, appropriate sign, then perfor-
mance will generally be good.

A detailed case-by-case for all cases of interest are omit-
ted for brevity, but the failure mode is particularly inter-
esting and so we will highlight it here. The case that is
difficult for this controller to handle is where the robot

is headed “straight towards a brick wall”. Although this
might sensibly seem to correspond well to a case such as
beta(0.01, 0.01) where there will be pdf density for “either
turning left or right, but not straight,” this does not work
because the robot does not “commit” to either side, and so
actually ends up going straight (alternating left and right)
into the wall. Having very large weights that correspond
to “always turn as soon as I see something” is one way
around this problem, but this gives very jittery, non-ideal
performance.

5. Conclusion
In conclusion, we have investigated a number of RL meth-
ods for learning controllers for our obstacle-avoidance task.
To summarize briefly, we highlight again the most notable
differences between the methods.

The dynamic programming methods were able to learn
controllers that would improve performance with train-
ing time, as expected. Even though the “state” of the
robot is highly non-Markov, the value function estimation
seems to still work well, as evidenced by the controller per-
formance. Discretizing the state and action space, even
for this small toy robot, was a limitation that we expect
prevented the robot from achieving optimal performance
given the robot’s limitations. Both SARSA and Q-Learning
worked well in the discretized domain, except for occa-
sional failure modes that were described in section 3.2.2.
Ultimately there wasn’t much difference in performance
between SARSA and Q-Learning. Function approxima-
tion was investigated in order to avoid discretizing the state
space. The function approximation method was more sen-
sitive to divergence and failure modes, but with careful pa-
rameter choices could be made to work.

The policy search methods offered a different set of ad-
vantages and disadvantages. One clear advantage is that
the robot does not have to discretize either the state or ac-
tion space: both can be continuous. This allows the robot
to make control decisions based on much richer informa-
tion, and execute smoother maneuvers. Another advantage
is that it was very easy to seed the policy parameteriza-
tion with a highly functional policy. Policy search is also
known, because it avoids the curse of dimensionality from
discretization, to scale to higher dimensional systems bet-
ter. Although “not dynamic programming” is an advantage
of the policy search methods, it is also a major disadvan-
tage. The search through policy space has no guarantees
other than to find local optima.

While the results of some of the learned controllers were
impressive, they were also humbling. In this game of hu-
man design versus reinforcement learning agent, the game
was tipped in favor of human design. The controllers de-
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signed by hand worked significantly better with signifi-
cantly less effort: the value function controllers were not
able to beat the performance of the Braitenberg controller,
and the policy search did not significantly improve upon a
parameterization that was chosen by design in a couple of
minutes.

In theory there seems to be no reason, for example, that
given sufficiently small step sizes, and sufficient random
initializations, that a policy search method can’t verifiably
improve the performance of a hand-designed parameteriza-
tion. In practice, though, this is not that easy!

6. Division of Labor
Lucas implemented the value function based controllers
(SARSA, and Q-Learning, both discrete and function ap-
proximation). He also helped build out the simulation en-
vironment, and wrote the utility methods for logging, play-
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object-oriented modules and pulled together the simulation
environment, designed the Braitenberg controllers, and im-
plemented the policy search methods. The overall simula-
tion architecture was designed together.
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Figure 2. The weights W for computing the reward.

Figure 3. The obstacle field used for the majority of the learning runs
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Figure 4. A situation where the SARSA controller chooses the straight control action, while the default controller would choose a hard
turn to the left.

Figure 5. An example situation where the SARSA controller would drive through the gap.
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Figure 6. Performance of three different controllers using the parameters in Table 2. The duration is in simulator ticks, there are 20
ticks/second. learnedRandom corresponds to the SARSA controller during the learning phase where we are still randomizing the policy.
learned is the actual SARSA with no randomization. And default is the Braitenburg controller from Algorithm 1.
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Figure 7. Performance over time of the SARSA learning controllers using parameters in Table 2. The duration is in simulator ticks,
there are 20 ticks/second. The orange points correspond to the learning phase where the SARSA controller is using the ✏-greedy control
policy. Purple corresonds to the greedy control policy with no randomization.

Figure 8. The weights wa(n) for function approximation version of SARSA(�)
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Figure 9. Comparison of performance of discrete SARSA(�) for different � values.
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Figure 10. Comparison of performance across 10 runs of discrete SARSA using parameters in Table 2. The duration is in simulator
ticks, there are 20 ticks/second.
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Figure 11. Comparison of performance of discrete Q-Learning(�) for different � values.

Figure 12. Comparison of performance across 10 runs of discrete Q-Learning using parameters in Table 2.
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Figure 13. Performance (run duration and discounted reward) over time of the policy search controller (Episodic REINFORCE), initial-
ized with all zero weights. Parameters for the gradient descent update were ⌘ = 5e� 2 and �2

p = 4.0.

Figure 14. Initial (all zero) and final weights ✓left of the policy search controller (Episodic REINFORCE), for the same trained controller
as in the figure above.
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Figure 15. Performance (run duration and discounted reward) over time of the policy search controller (Episodic REINFORCE), initial-
ized with sensible but imperfect weights (as plotted in the figure below). Parameters for the gradient descent update were ⌘ = 2e � 2
and �2

p = 6.0.

Figure 16. Initial and final weights ✓left of the policy search controller (Episodic REINFORCE), for the same trained controller as in
the figure above.
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Parameter Value
N

inner

5

N

outer

4

�

cutoff

0.5

↵ 0.2

� 0.95

� 0.7

C

action

0.4

C

max

20

C

collision

100

C0 0.3

C

raycast

40

Table 2. Default parameter values for SARSA(�)


